
9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

TABLE OF CONTENTS

Student Activity 1.1... 2

Student Activity 1.2... 3

Student Activity 1.4... 8

Student Activity 1.6... 9

Student Activity 2.1... 12

Student Activity 2.2... 14

Student Activity 2.3... 15

Student Activity 2.4... 17

Student Activity 2.6... 18

Student Activity 3.1... 19

Student Activity 4.1... 21

Student Activity 4.2... 22

Student Activity 5.1... 23

Student Activity 5.2... 24

Student Activity 5.3... 25

Student Activity 5.4... 26

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 2 of 26

STUDENT ACTIVITY 1.1
Directions:
Match the definitions on the right to the terms on the left. Write the letter of the
correct answer next to each problem.

1. External
style

a. A technology developed by the W3C to separate
style from content in an HTML page. A style sheet
is a file that contains information about the color,
font, and layout used on a website.

2. Internal
style

b. All definitions are saved in a separate text file and
referenced by one or more of the pages on the
website.

3. Embed c. Styles are defined within the <style> tag, which is
placed in the <head> section of the HTML file.

4. CSS d. The name of the HTML tag that is being set by this
style.

5. Table e. An element used in Web development to include
graphics on a Web page.

6. Inline
style

f. The process of including an external image,
document, or other object within a Web page.

7. Image g. An HTML tag that divides content into rows and
data cells.

8. Property h. A style that is included in the XHTML tag itself.

9. Selector i. The attribute of the HTML tag that is being set by
this style.

10. URL j. The domain address of the website.

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 3 of 26

STUDENT ACTIVITY 1.2
Directions:
Review the following example from the Ramp-Up site. Use this code to create a
Web page that uses the ASP.NET controls discussed in this lesson. Both Visual
Basic and C# versions are included.

Example ASP.NET Web Page
The following code example shows a page that includes the basic elements that
constitute an ASP.NET Web page. The page contains static text as you might
have in a Hypertext Markup Language (HTML) page, along with elements that
are specific to ASP.NET.

<%@ Page Language="VB" %>
<html>
<head runat="server">
 <title>Basic ASP.NET Web Page</title>
<script runat="server">
 Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Label1.Text = "Welcome, " & TextBox1.Text
 End Sub
</script>
</head>
<body>
 <form id="form1" runat="server">
 <h1>Welcome to ASP.NET</h1>
 <p>Type your name and click the button.</p>
 <p>
 <asp:TextBox ID="TextBox1"
runat="server"></asp:TextBox>
 <asp:Button ID="Button1" runat="server"
 Text="Click" OnClick="Button1_Click" />
 </p>
 <p>
 <asp:Label ID="Label1" runat="server"></asp:Label>
 </p>
 </form>
</body>
</html>

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 4 of 26

Form Elements
If your page includes controls that allow users to interact with the page and
submit it, the page must include a form element. You use the standard HTML
form element, but certain rules apply. The rules for using the form element are
as follows:

• The page can contain only one form element.
• The form element must contain the runat attribute with the value set to

server. This attribute allows you to refer to the form and the controls on
the page programmatically in server code.

• Server controls that can perform a postback must be inside the form
element.

• The opening tag must not contain an action attribute. ASP.NET sets
these attributes dynamically when the page is processed, overriding any
settings that you might make.

Web Server Controls
In most ASP.NET pages, you will add controls that allow the user to interact with
the page, including buttons, text boxes, lists, and other elements. These Web
server controls are similar to HTML buttons and input elements. However, they
are processed on the server, allowing you to use server code to set their
properties. These controls also raise events that you can handle in server code.
Server controls use a special syntax that ASP.NET recognizes when the page
runs. The following code example shows some typical Web server controls:

<asp:TextBox ID="TextBox1" runat="server"></asp:TextBox>
<asp:Button ID="Button1" runat="server" Text="Click"
OnClick="Button1_Click" />

The tag name for ASP.NET server controls starts with a prefix— in this case,
asp:. The prefix might be different if the control is not part of the Microsoft .NET
Framework. ASP.NET server controls also include the runat="server" attribute
and, optionally, an ID that you can use to reference the control in server code.
When the page runs, it identifies the server controls and runs the code that is
associated with those controls. Many controls render some HTML or other
markup into the page. For example, the asp:textbox control renders an input
element with the type="text" attribute into a page. However, there is not
necessarily a one-to-one mapping between a Web server control and an HTML
element. For example, the asp:calendar control renders an HTML table. Some
controls do not render anything to the browser; instead, they are processed only
on the server, and they provide information to other controls.

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 5 of 26

HTML Elements as Server Controls
Instead of, or in addition to, using ASP.NET server controls, you can use ordinary
HTML elements as server controls. You can add the runat="server" attribute
and an ID attribute to any HTML element in the page. When the page runs,
ASP.NET identifies the element as a server control and makes it available to
server code. For example, you can add the required elements to an HTML body
element, as shown in the following code example:

<body runat="server" id="body">

You can then reference the body element in server code—for example, to set
the body background color at run time in response to user input or to information
from a database.

Server Code
Most ASP.NET pages include code that runs on the server when the page is
processed. ASP.NET supports many languages, including C#, Visual Basic, J#,
Jscript, and others.
ASP.NET supports two models for writing server code for a Web page. In the
single-file model, the code for the page is in a script element where the opening
tag includes the runat="server" attribute. The example earlier in this topic shows
the single-file model.
Alternatively, you can create the code for the page in a separate class file, which
is referred to as the code-behind model. In this case, the ASP.NET Web page
generally contains no server code. Instead, the @ Page directive includes
information that links the .aspx page with its associated code-behind file. The
following code example shows a typical @ Page directive for a page with a code-
behind file.

<%@ Page Language="VB" CodeFile="Default.aspx.vb"
Inherits="Default" %>

The CodeFile attribute specifies the name of the separate class file, and the
Inherits attribute specifies the name of the class within the code-behind file that
corresponds to the page.

Embedded Code Blocks in ASP.NET Web Pages
The default model for adding code to an ASP.NET Web page is to either create a
code-behind class file (a code-behind page) or to write the page's code in a
script block with the attribute runat="server" (a single-file page). The code you
write typically interacts with controls on the page. For example, you can display

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 6 of 26

information on the page from code by setting the Text (or other) properties of
controls.
Another possibility is to embed code directly into the page using an embedded
code block.

Embedded Code Blocks
An embedded code block is server code that executes during the page's render
phase. The code in the block can execute programming statements and call
functions in the current page class.

The following code example shows an ASP.NET page with an embedded code
block that displays the results of a loop:

<%@ Page Language="VB" %>
<html><head><title></title></head>
<body>
 <form id="form1" runat="server">
 <% For i As Integer = 0 To 5 %>
 <% Response.Write("
" & i.ToString())%>
 <% Next%>
 </form>
</body>
</html>

The following code example shows an embedded code block that displays the
value of a public GetTime() function inside a span element. In embedded code
blocks, the syntax <% = expression %> is used to resolve an expression and
return its value into the block.

<%@ Page Language="VB" %>
<html>
<head>
<script runat=server>
Protected Function GetTime() As String
 Return DateTime.Now.ToString("t")
End Function
</script>
</head>
<body>
 <form id="form1" runat="server">
 Current server time is <% =GetTime()%>.
 </form>
</body>
</html>

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 7 of 26

Embedded code blocks must be written in the page's default language. For
example, if the page's @ Page directive contains the attribute language="VB",
the page will use the Visual Basic compiler to compile code in any script block
marked with runat="server" and any inline code in <% %> delimiters

Uses for Embedded Code Blocks
Embedded code blocks are supported in ASP.NET Web pages primarily to
preserve backward compatibility with older ASP technology. In general, using
embedded code blocks for complex programming logic is not a best practice
because when the code is mixed on the page with markup, it can be difficult to
debug and maintain. In addition, because the code is executed only during the
page's render phase, you have substantially less flexibility than with code-behind
or script-block code in scoping your code to the appropriate stage of page
processing.
Some uses for embedded code blocks include:
Setting the value of a control or markup element to a value returned by a
function, as illustrated in the preceding example.
Embedding a calculation directly into the markup or control property.

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 8 of 26

STUDENT ACTIVITY 1.4
Directions:

Arrange the following events in the order that they occur. Indicate the order by
placing a number in the space provided.

Order Page Event

 Page_Load Complete

 Page_PreLoad

 Page_SaveStateComplete

 Page_Load

 Page_Init

 Page_PreRender

 Page_PreInit

 Page_InitComplete

 Control events

 Page_Render

 Page_Unload

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 9 of 26

STUDENT ACTIVITY 1.6
Directions:
1. Visit the following link and answer the following questions.

http://support.microsoft.com/kb/815179#3

A. What type of file is a Web.config file? _____________________

B. List two tags that are necessary for the file to function properly within an
ASP.NET application. _______________________

C. True or False: A Machine.config file contains settings that override the

Web.config file. ___________

2. Open Visual Studio and create a new ASP.NET project.
3. Add configuration settings to the Web.config file. Most ASP.NET applications

come with a prebuilt Web.config file that can be edited with any text editor
such as Notepad. Generally, Web.config files contain comments that make
editing the file self-explanatory. However, you may have to add configuration
items to a Web.config file that does not already have the configuration item
defined. To add a standard configuration item to a Web.config file, follow
these steps:
A. Open the Machine.config file in a text editor such as Notepad.

The Machine.config file is located in the
%SystemRoot%\Microsoft.NET\Framework\%VersionNumber%\CONFIG\
directory of the 2.0 version installation of the .NET framework. Versions
3.0 and 3.5 are built on 2.0 version installation and use its Machine.config
file rather than having their own. Check the documentation if using a
different version of .NET. In the Machine.config file, locate the
configuration setting that you want to override with your application’s
Web.config file. Because the Machine .config file must be a well-formed
XML document, the elements must be defined using an opening tag
(<element_name>) and a closing tag (</element_name>), unless the
element is a self-closing tag. If the element is defined as a self-closing
tag, it will look similar to <element_name attribute1=”option”
attribute2=”option” />. Any white space is ignored. Therefore, the element
may span multiple lines. Often, elements of configuration files may are
preceded by a comment to help describe the element’s use and possible
values. Comments are contained inside <!-- and --> markings. The
comments for the Machine.config file are usually included in a separate
file named Machine.config.comments The <trace> configuration element
example that follows, is an example of a self-closing element tag, has

http://support.microsoft.com/kb/815179#3

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 10 of 26

multiple attributes, spans multiple lines, and is preceded by a comment to
explain its purpose and use.
<!--
trace Attributes:
enabled="[true|false]" - Enable application tracing
localOnly="[true|false]" - View trace results from localhost
only
pageOutput="[true|false]" - Display trace ouput on
individual pages
requestLimit="[number]" - Number of trace results available
in trace.axd
traceMode="[SortByTime|SortByCategory]" - Sorts trace result
displays based on Time or Category
-->
 <trace
enabled="false"
localOnly="true"
pageOutput="false"
requestLimit="10"
traceMode="SortByTime"
/>

B. Copy the whole configuration element and any associated comments to

the clipboard.
4. Determine the element’s nested location within the Machine.config file.

The Machine.config file is hierarchical, and the configuration elements must
be nested properly within other elements. When you copy a configuration
element from the Machine.config file to the Web.config file, you must nest that
configuration element in the same element that it was copied from. To
determine the element of the Machine.config file that the configuration
element is contained in, scroll up in the Machine.config file until you find an
element that is opened, not closed. The containing element is simple to
identify because higher-level elements are typically shown with less
indentation.
Most ASP.NET configuration items are contained in the
<system.web></system.web>
Note the element that your configuration element is contained in. You must
paste that element in the same element in the Web.config file. A configuration
element may be nested in multiple elements. You must create all higher-level
elements in the Web.config file.

5. Close the Machine.config file, and then use your text editor to open the
Web.config file in the root directory of your ASP.NET application.

6. Paste the configuration element between the beginning and the end of the
element that you identified in step 4.
For example, if the configuration item is contained in the <system.web>
element, the configuration item must be pasted immediately after the opening
line of the <system.web> element and before the </system.web> closing line.

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 11 of 26

7. Modify your Web application’s Web.config file to override the server’s
Machine.config file’s configuration element which you chose in step ‘b’ to
override.Modify the setting for that element in your Web application’s
Web.config file. This setting now applies to the folder that contains the
Web.config file and all its subfolders.

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 12 of 26

STUDENT ACTIVITY 2.1
Directions:
1. Find the error:

<?xml version="1.0" encoding="ISO-8859-1"?>
<note>
 <to>Jane</to>
 <from>Tammy</Ffrom>
 <heading>Reminder</heading>
 <body>Don't forget to do your homework for English
tomorrow!</body>
</note>

2. Create a simple XML document using notepad to keep track of your CD
collection. You want to keep track of the following information for each CD:
Title, Artist, Year, Number of Tracks, Cost. Include data for at least five CDs
in your document. Save the file as CD_Catalog.xml

3. Validate an XML document:

A. Visit the following website:

http://www.w3schools.com/XML/xml_validator.asp

B. Following the instructions for validating an XML page using the XML
document you created in problem 2 of this activity.

C. A message will indicate the result of the validation process. Correct as
necessary.

D. Remove some of the closing tags or misspell a tag and record the results
of the validation process for each introduced error.

4. Use this html page to test your new CD Collection xml file. Make sure both
file are in the same directory.

<html>
<body>
<script type="text/javascript">
var xmlDoc=null;
if (window.ActiveXObject)
{
// code for IE
xmlDoc=new ActiveXObject("Microsoft.XMLDOM");
}
else if (document.implementation.createDocument)
{
// code for Mozilla, Firefox, Opera, etc.
xmlDoc=document.implementation.createDocument("","",null);
}
else

http://www.w3schools.com/XML/xml_validator.asp

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 13 of 26

{
alert('Your browser cannot handle this script');
}
if (xmlDoc!=null)
{
xmlDoc.async=false;
xmlDoc.load("cd_catalog.xml");
var x=xmlDoc.getElementsByTagName("cd");
document.write("<table border='1'>");
document.write("<thead>");
document.write("<tr><th>Artist</th><th>Title</th></tr>");
document.write("</thead>");
document.write("<tfoot>");
document.write("<tr><th colspan='2'>This is my CD
collection</th></tr>");
document.write("</tfoot>");
for (var i=0;i<x.length;i++)
{
document.write("<tr>");
document.write("<td>");
document.write(x[i].getElementsByTagName("artist")[0].childN
odes[0].nodeValue);
document.write("</td>");
document.write("<td>");
document.write(x[i].getElementsByTagName("title")[0].
childNodes[0].nodeValue);
document.write("</td>");
document.write("</tr>");
}
document.write("</table>");
}
</script>
</body>
</html>

5. Use the links below to review the process of creating an XML document and

using it in conjunction with the Web services listed in the Lesson Objective:

http://quickstarts.asp.net/QuickStartv20/howto/doc/Xml/OverviewofXML.aspx

http://msdn.microsoft.com/en-us/data/bb190600.aspx

http://msdn.microsoft.com/en-us/library/aa468547.aspx

http://quickstarts.asp.net/QuickStartv20/howto/doc/Xml/OverviewofXML.aspx
http://msdn.microsoft.com/en-us/data/bb190600.aspx
http://msdn.microsoft.com/en-us/library/aa468547.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 14 of 26

STUDENT ACTIVITY 2.2
Directions:
Part 1
1. Open Visual Studio and create a new ASP.NET website project.
2. Complete the following activity for creating a DataSet at the following link:

http://msdn.microsoft.com/en-
us/library/04y282hb%28VS.80%29.aspx

Part 2
1. Open Visual Studio and create a new ASP.NET website project.
2. Complete the following activity demonstrating the use of DataReader at the

following link:

http://support.microsoft.com/kb/310107

Part 3
1. Reflect on the two activities and summarize the key aspects of each.
2. Describe how each example demonstrates these points.

Use these sites for additional information on DataSet and DataReader:

http://msdn.microsoft.com/en-us/library/haa3afyz.aspx

http://msdn.microsoft.com/en-
us/library/system.data.dataset.aspx

http://msdn.microsoft.com/en-us/magazine/cc188717.aspx#S4

http://msdn.microsoft.com/en-us/library/04y282hb%28VS.80%29.aspx
http://msdn.microsoft.com/en-us/library/04y282hb%28VS.80%29.aspx
http://support.microsoft.com/kb/310107
http://msdn.microsoft.com/en-us/library/haa3afyz.aspx
http://msdn.microsoft.com/en-us/library/system.data.dataset.aspx
http://msdn.microsoft.com/en-us/library/system.data.dataset.aspx
http://msdn.microsoft.com/en-us/magazine/cc188717.aspx#S4

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 15 of 26

STUDENT ACTIVITY 2.3
Directions:
Part 1: Write a simple .asmx Web service
1. Open Visual Studio 2008.
2. Create a new ASP.NET Web service project. Name the Web service

MathService and point the location to an appropriate Web server that is
running ASP.NET if necessary.

3. Change the name of the Solution file to MathService for consistency.
4. Change the name of the default Web service that is created from

Service1.asmx to MathService.asmx.
5. At this point, the code will be displayed. You can change the name of the

class from Public Class Service1 to Public Class MathService, but you must
also change the name of the class referenced in the asmx file in its markup
view.

6. Define methods that encapsulate the functionality of your service. Each
method that will be exposed from the service must be flagged with a
WebMethod attribute in front of it. Without this attribute, the method will not
be exposed from the service.
Note: Not every method needs to have the WebMethod attribute. It is useful
to hide some implementation details called by public Web service methods
or for the situation in which the WebService class is also used in local
applications. A local application can use any public class, but only
WebMethod methods can be remotely accessed as Web services.

7. Add the following methods to the MathServices class that you just created.
These methods must go inside the class body and replaced any placeholder
method that already exists, such as Hello World.(This example is using
Visual Basic.)
<WebMethod()> Public Function Add(a As Integer, b As Integer)
As Integer
 Return(a + b)
End Function
<WebMethod()> Public Function Subtract(A As System.Single, B
As System.Single) As System.Single
 Return A - B
End Function
<WebMethod()> Public Function Multiply(A As System.Single, B
As System.Single) As System.Single
 Return A * B
End Function
<WebMethod()> Public Function Divide(A As System.Single, B As
System.Single) As System.Single

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 16 of 26

If B = 0
 Return -1
End If
Return Convert.ToSingle(A / B)
End Function

8. Select Build on the Build menu to finalize the Web service.
9. Browse to the MathService.asmx Web service page to test the Web service. If

you set the local computer to host the page, the URL is
http://localhost/MathService/MathService.asmx
The ASP.NET runtime returns a Web Service Help Page that describes the
Web service. This page also enables you to test different Web service
methods.

Part 2: Consume a Web service
1. Start Visual Studio 2008.
2. Create a new Console application project. Select either VB or C#.
3. Add a reference for the MathService Web Service to the new Console

application.
This step creates a proxy class on the client computer. After the proxy class
exists, you can create objects based on the class. Each method call that is
made with the object then goes out to the uniform resource identifier (URI) of
the Web service (usually as a SOAP request).
A. In the Solution Explorer, right click on References, choose ‘Add Service

Reference’. From the dialog box, choose ‘Advanced’, and then click the
‘Add Web Reference’ button at the bottom of the dialog box. In the Add
Service Reference dialog box, type the URL for the Web service in the
Address text box and press Enter. If you set the local computer to host the
Web service, the URL is http://localhost/MathService/MathService.asmx

B. Click Add Reference.
C. Expand the Web References section of Solution Explorer and note the

namespace that was used.
4. Create an instance of the proxy object that was created. Place this code in

the Main procedure of the Module1 module:
Dim myMathService As localhost.MathService = New
localhost.MathService()

5. In the main method of your console application code, invoke a method on the
proxy object created in the previous step, such as:
Console.Write("2 + 4 = {0}", myMathService.Add(2,4))

6. Save the project. Compile and run the application.

http://localhost/MathService/MathService.asmx
http://localhost/MathService/MathService.asmx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 17 of 26

STUDENT ACTIVITY 2.4
Directions:

1. Visit the Web tutorials listed below to review DataSource controls.
 Displaying Data with the ObjectDataSource

http://www.asp.net/learn/data-access/tutorial-04-vb.aspx

 Demonstration: XmlDataSource
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/ctrlref/data/xmldata
source.aspx

 Example: Using SqlDataSource
http://www.asp.net/%28S%28pdfrohu0ajmwt445fanvj2r3%29%29/learn
/data-access/tutorial-47-vb.aspx

 Example: Using LinqDataSource
http://msdn.microsoft.com/en-
us/library/system.web.ui.webcontrols.linqdatasource.aspx

2. Write a one- to two-sentence summary describing the features of each
DataSource control.

http://www.asp.net/learn/data-access/tutorial-04-vb.aspx
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/ctrlref/data/xmldatasource.aspx
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/ctrlref/data/xmldatasource.aspx
http://www.asp.net/%28S%28pdfrohu0ajmwt445fanvj2r3%29%29/learn/data-access/tutorial-47-vb.aspx
http://www.asp.net/%28S%28pdfrohu0ajmwt445fanvj2r3%29%29/learn/data-access/tutorial-47-vb.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.linqdatasource.aspx
http://msdn.microsoft.com/en-us/library/system.web.ui.webcontrols.linqdatasource.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 18 of 26

STUDENT ACTIVITY 2.6
Directions:
Review the information and example from the following link. Summarize your
learning by answering the following questions.
“Walkthrough: Data Binding to a Custom Business Object”
http://msdn.microsoft.com/en-us/library/1se6685s.aspx

Questions:
1. What data is used by the component in the example presented?

2. What is important to remember with respect to the filePath variable?

3. What is important to remember when naming the SelectMethod property?

4. Describe how you would create an App_Code folder.

As time permits or as homework, review the information and examples from the
following link.
“Binding to Data Using a Data Source Control”
http://msdn.microsoft.com/en-us/library/ms228089.aspx

http://msdn.microsoft.com/en-us/library/1se6685s.aspx
http://msdn.microsoft.com/en-us/library/ms228089.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 19 of 26

STUDENT ACTIVITY 3.1
Directions:

1. Create a new Visual Studio ASP.NET website project.
2. Use that project to complete the activity described at the following link:

http://support.microsoft.com/kb/316726
3. Use that same project to complete the activity for ASP.NET AJAX

Debugging and Tracing at
http://www.asp.net/ajax/documentation/live/overview/aspnetajaxdebugging
andtracingoverview.aspx

Questions:
1. What attribute-value pair must be added to the page directive at the top of

the Code window to turn on the tracing functionality?

2. What does page-level tracing do?

3. What statements are placed throughout the code to track variable values

and execution paths during the debugging of a traditional Active Server
Pages (ASP) application?

4. Identify two locations from which a Web application can be configured to

allow tracing.

Now you will review how to use tracing in a website. Start by opening either
Visual Studio or Microsoft Visual Web Developer. Explore the following websites
and answer the questions about each.
PART 1—ENABLE TRACING FOR AN ASP.NET PAGE
HTTP://MSDN.MICROSOFT.COM/EN-US/LIBRARY/94C55D08.ASPX
Questions:

1. What file was updated with the “@ Page” directive? Where is the new
code located in the file?

2. What specific code is used?

http://support.microsoft.com/kb/316726
http://www.asp.net/ajax/documentation/live/overview/aspnetajaxdebuggingandtracingoverview.aspx
http://www.asp.net/ajax/documentation/live/overview/aspnetajaxdebuggingandtracingoverview.aspx
http://msdn.microsoft.com/en-us/library/94c55d08.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 20 of 26

Part 2—Enable Tracing for an ASP.NET Application
http://msdn.microsoft.com/en-us/library/0x5wc973.aspx
Questions:

1. What file was used in this example to enable application tracing?

2. What is the specific code used to enable tracing in an application?

3. What must be done to make the trace information appear at the end of the

page that is associated with it?

Part 3—How to: View ASP.NET Trace Information with the Trace Viewer
http://msdn.microsoft.com/en-us/library/wwh16c6c.aspx
Questions:

1. Describe how you would view trace details for a specific website request.

2. How would you clear requests from the trace viewer?

http://msdn.microsoft.com/en-us/library/0x5wc973.aspx
http://msdn.microsoft.com/en-us/library/wwh16c6c.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 21 of 26

STUDENT ACTIVITY 4.1
Directions:

1. View the video: http://www.asp.net/learn/videos/video-275.aspx

2. Answer the following questions:
a. Explain how the hidden field changes its value after clicking the Get

Data button in the first portion of the video.

b. What advantages does the developer get when the JavaScript code is

moved to an external JavaScript file?

c. Explain how the developer is using the ClientScriptManager class?

d. Download the VB or C# version of the code. Run the programs making

changes and setting breakpoints to test your understanding of client-
side scripting. Record your steps, experiences, and problems.

http://www.asp.net/learn/videos/video-275.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 22 of 26

STUDENT ACTIVITY 4.2
Directions:
Explore the tutorial at http://www.asp.net/learn/Ajax/tutorial-01-cs.aspx using
Microsoft Visual Web Developer or the Express version to complete the tutorial
activity. Answer the following questions.
Questions:
1. List problems with server-side processing that AJAX addresses.

2. List some of the benefits of using AJAX to do partial- page updates.

3. What is the role of the ScriptManager control?

http://www.asp.net/learn/Ajax/tutorial-01-cs.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 23 of 26

STUDENT ACTIVITY 5.1
Directions:
The following section contains tutorials that demonstrate the use of Windows
authorization (Part 1), and Forms authentication (Part 2). You may choose one or
both, depending on the areas in which you want more practice. Work on the
activities as class time allows, and complete outside of class as needed.
Part 1—Windows Authorization
1. Open Visual Studio and create a new ASP.NET website project.
2. Complete the following activity in either Visual Basic or C#:

Windows Authorization (Visual Basic version)
http://www.asp.net/learn/mvc/tutorial-18-vb.aspx

Part 2—Forms Authorization
1. Open Visual Studio and create a new ASP.NET website project.
2. Complete the following activity in either Visual Basic or C#:

Forms Authorization (Visual Basic version)
http://www.asp.net/learn/security/tutorial-02-vb.aspx

Once you have completed your work, print the code from the Web.config file as
the result of your work.

http://www.asp.net/learn/mvc/tutorial-18-vb.aspx
http://www.asp.net/learn/security/tutorial-02-vb.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 24 of 26

STUDENT ACTIVITY 5.2
Directions:
View the video How Do I Determine Whether to Use a Web Site or a Web
Application Project (http://www.asp.net/learn/videos/video-410.aspx). Complete
the chart below to demonstrate your understanding of the differences and
similarities between Visual Studio Web Site and Web Application Projects.

Attribute Visual Studio Web Site
Project Type

Visual Studio Web Application
Project Type

Historical
background

Creation
process

Folder
arrangement

Namespaces

Classes

Master Pages

Referencing
a user control

Compiling

Previewing
site

When this is
the best
choice

Best when:

Best when:

http://www.asp.net/learn/videos/video-410.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 25 of 26

STUDENT ACTIVITY 5.3
Directions:
Using Microsoft Visual Web Developer or the Express version, complete the
following activity to review deploying a Web Application in Part 1, and creating a
website using IIS in Part2. Follow the link below to the tutorial. Then answer the
questions below on a separate piece of paper. You may do either the Visual
Basic or C# version. Note: you do not have to perform the steps; just review the
process.
Part 1: Deploying a Web Application
Visual Basic Version—http://www.asp.net/learn/hosting/tutorial-04-vb.aspx

Reflection:
Summarize or outline the steps needed to deploy a Web application, as
described in the tutorial.

Part 2: Creating a Website Using IIS
http://technet.microsoft.com/en-us/library/cc772350%28WS.10%29.aspx

Reflection:
Summarize or outline the steps to set up a website using Internet Information
Services (IIS), as described in the tutorial.

http://technet.microsoft.com/en-us/library/cc772350%28WS.10%29.aspx

9 8 - 3 6 3 W E B D E V E L O P M E N T F U N D A M E N T A L S

Page 26 of 26

STUDENT ACTIVITY 5.4
Directions to the student:
Review the steps to create application pools. Start by visiting the link to review
the tutorial. Then answer the following questions.
CREATING APPLICATION POOLS
http://www.iis.net/ConfigReference/system.applicationHost/applicationPools

1. Read the “Overview” section on the page.
2. Go to the section called “How to create a new application pool” and

continue reviewing from there.

http://www.iis.net/ConfigReference/system.applicationHost/applicationPools

	Student Activity 1.1
	Student Activity 1.2
	Student Activity 1.4
	Student Activity 1.6
	Student Activity 2.1
	Student Activity 2.2
	Student Activity 2.3
	Student Activity 2.4
	Directions:
	Student Activity 2.6
	Directions:
	Questions:
	Student Activity 3.1
	Directions:
	Questions:
	Part 1—Enable Tracing for an ASP.NET Page http://msdn.microsoft.com/en-us/library/94c55d08.aspx
	Questions:
	Part 2—Enable Tracing for an ASP.NET Application http://msdn.microsoft.com/en-us/library/0x5wc973.aspx
	Questions:
	Part 3—How to: View ASP.NET Trace Information with the Trace Viewer http://msdn.microsoft.com/en-us/library/wwh16c6c.aspx
	Questions:
	Student Activity 4.1
	Directions:
	Student Activity 4.2
	Directions:
	Questions:
	Student Activity 5.1
	Directions:
	Part 1—Windows Authorization
	Part 2—Forms Authorization
	Student Activity 5.2
	Directions:
	Student Activity 5.3
	Directions:
	Part 1: Deploying a Web Application
	Part 2: Creating a Website Using IIS
	Student Activity 5.4
	Directions to the student:
	Creating Application Pools

