
DEVASCv1

Module 6: Application
Deployment and
Security

DevNet Associate v1.0

DEVASCv1 2

Module Objectives
 Module Title: Application Deployment and Security
 Module Objective: Use current technologies to deploy and secure applications and

data in a cloud environment.
 It will comprise of the following sections:

Topic Title Topic Objective

6.1 Understanding Deployment Choices
with Different Models Explain common cloud deployment models.

6.2 Creating and Deploying a Sample
Application Use container technology to deploy a simple application.

6.3 Continuous Integration/Continuous
Deployment (CI/CD)

Explain the use of Continuous Integration/Continuous Deployment (CI/CD) in
application deployment.

6.4 Networks for Application Development
and Security

Explain the network technology required for application development in a cloud
environment.

6.5 Securing Applications Use common application security techniques to secure data.

DEVASCv1 3

6.1 Understanding
Deployment Choices with
Different Models

DEVASCv1 4

Introduction to Deployment Choices
 Developers need to do more than deliver application code: they need to concern

themselves with how applications are deployed, secured, operated, monitored,
scaled, and maintained.
 The physical and virtual infrastructure and platforms on which applications are

being developed and deployed are quickly evolving.
 Developers are confronted with an expanding stack of platform options, which are

all hosted on infrastructures and frameworks of increasing flexibility and
complexity.

DEVASCv1 5

Deployment Environments
 A piece of code, before it reaches to the user, passes through a number of

environments that leads to an increase in its quality and reliability. These
environments are self-contained and mimic the ultimate environment in which the
code will live.
 Typically, large organizations use a four-tier structure:

Development Testing Staging Production
• This environment is

used for coding. I
• t is also used to

manage fundamental
aspects of the
infrastructure, such as
containers or cloud
networking.

• This environment is
used for testing the
code.

• It often includes
automated tools such
as Jenkins, Circled, or
Travis Cl.

• It is often integrated
with a version control
system

• This environment is
structured as close as
possible to the actual
production
environment.

• It is used for final
acceptance testing in a
realistic environment.

• This environment
contains code that has
been tested multiple
times and is error free.

• It is used for deploying
the final code for the
end user interaction.

DEVASCv1 6

Deployment Models
 There are various deployment models that can be used to deploy a software.

These include Bare Metal, Virtual Machines, Container-based Infrastructure and
Serverless Computing.
 Bare Metal

• A bare metal deployment is essentially deploying to an actual computer. It is
used to install a software directly on the target computer.

• In this method, software can directly access the
operating system and the hardware.

• It is useful for situations requiring access to
specialized hardware, or for High Performance
Computing (HPC) applications.

• It is now used as infrastructure to host
virtualization and cloud frameworks.

DEVASCv1 7

Deployment Models
 Virtual Machines (VMs)

• Virtual machines share the resources of the host but is completely self-
contained. It is like a computer within the computer and has its own memory,
network interfaces, storage, and operating system.

• Hypervisor is software that creates and manages VMs.
• VMs run on top of a hypervisor that provides VMs with simulated hardware, or

with controlled access to underlying physical hardware.

DEVASCv1 8

Deployment Models
 Container-based infrastructure

• Containers were designed to provide the same benefits as VMs, such as
workload isolation and the ability to run multiple workloads on a single machine
but are designed to start up quickly.

• Containers share resources of the
host including the kernel.

• A container shares the operating
system of the host machine and
uses container-specific binaries
and libraries.

DEVASCv1 9

Deployment Models
 Serverless Computing

• Serverless computing takes advantage of a modern trend towards applications that are
built around services. Application makes a call to another program or workload to
accomplish a particular task, to create an environment where applications are made
available on an “as needed” basis.

• Serverless computing takes responsibility for assigning resources away from the
developer and only incurs costs when the application runs.

DEVASCv1 10

Deployment Models
 It works as follows:

• Step 1. The developer creates an application.
• Step 2. The developer deploys the application as a container, so that it can run

easily in any appropriate environment.
• Step 3. The developer deploys that container to a serverless computing

provider. This deployment includes a specification of how long the function
should remain inactive before it is spun down.

• Step 4. When necessary, the application calls the function.
• Step 5. The provider spins up an instance of the container, performs the needed

task, and returns the result.

DEVASCv1 11

Types of Infrastructure
 In the early days of computers, infrastructure was pretty straightforward. Software

ran on a single computer and networks could link multiple computers together.
 Now, infrastructure has become more complicated, with various options available

for designing the infrastructure such as different types of clouds, and what each
does and does not do well.

DEVASCv1 12

On-Premises
 On-Premises means any system that is literally within the confines of the building.
 On-Premises are the traditional data centers that house individual machines which

are provisioned for applications, rather than clouds.
 These traditional data centers with servers dedicated to individual applications, or

to VMs, which enable a single computer to act like multiple computers.
 Operating a traditional on-premises data center requires servers, storage devices,

and network equipment to be ordered, received, assembled in racks, moved to a
location, cabled for power and data. All this setup of infrastructure takes time and
effort.
 Problems related to On-Premises can be solved by moving to a cloud-based

solution.

DEVASCv1 13

Private Cloud
 A cloud is a system that provides self-service provisioning for compute resources,

networking, and storage.
 Private clouds are intended for a specific organization or entity.
 In a private cloud infrastructure, the organization controls all of the resources.
 In most cases, a private cloud is located in a data center and all resources that

run on the hardware belong to the owner organization.
 The advantage of a private cloud is that one

has complete control over where it is located.
 An operations team is required to manage the

cloud and keep it running.

DEVASCv1 14

Public Cloud
 A public cloud is the same as a private cloud, but it is managed by a public cloud

provider.
 Public cloud customers may share resources with other organizations.

Alternatively, public cloud providers may provide customers with dedicated
infrastructure.
 With a public cloud, the organization does not control the resources.
 A public cloud is helpful in scaling up virtually

as long as the load requires and then scale
down when traffic is slow.
 One disadvantage of public cloud is known as

the "noisy neighbor" problem.

DEVASCv1 15

Hybrid Cloud
 Hybrid cloud is the combination of two different types of clouds.
 Hybrid cloud is used to bridge a private cloud and a public cloud within a single

application.
 Hybrid cloud combines public and private cloud to provide additional resources

and security where necessary.
 Hybrid cloud is distinguished by the use of more than

one cloud within a single application.
 Container orchestrators have become very popular

with companies employing hybrid-cloud deployments.

DEVASCv1 16

Edge Cloud
 Edge cloud is gaining popularity because of the growth of the Internet of Things

(IoT).
• Edge cloud enables resources to be closer to where they are needed.
• Edge cloud computing comprises one or more central clouds that act as a hub for

the edge clouds themselves.
• Hardware for the edge clouds is located as

close as possible to the user.
• Edge cloud run on much smaller hardware

so they may be more resource-constrained.

DEVASCv1 17

6.2 Creating and
Deploying a Sample
Application

DEVASCv1 18

What is Docker?
 The most popular way to containerize an application is to deploy it as a Docker

container. A container is a way of encapsulating everything you need to run your
application, so that it can easily be deployed in a variety of environments. Docker
is a way of creating and running that container.
 A Docker image is a set of read-only files that have no state and contains source

code, libraries, and other dependencies needed to run an application.
 A Docker container is the run-time instance of a Docker image.
 Creating a container involves pulling an image or a template from a repository,

then using it to create a container.

DEVASCv1 19

What is Docker?
 Docker is a format that wraps a number of different technologies to create

containers. These technologies are:
• Namespaces - These isolate different parts of the running container.
• Control groups - These cgroups are a standard Linux concept that enables the

system to limit the resources, used by an application.
• Union File Systems - These UnionFS are file systems that are built layer by

layer, combining resources.

DEVASCv1 20

What is Docker?
 The workflow of creating a container is as follows:

• Step 1: Either create a new image using docker build or pull a copy of an
existing image from a registry using docker pull.

• Step 2: Run a container based on the image using docker run or docker
container create.

• Step 3: The Docker daemon checks to see if
it has a local copy of the image. If it does not,
it pulls the image from the registry.

• Step 4: The Docker daemon creates a
container based on the image and, if docker
run was used, logs into it and executes the
requested command.

DEVASCv1 21

What is Dockerfile?
 Dockerfile is a simple text-file which is required to compile the code.
 It defines the steps that the docker build command takes to create an image that

can be used to create the target container.
 Create a file named Dockerfile and save it in the current directory.
 Run the docker build command to build the image using a Dockerfile in the

current directory (.) and give it a
name of myubuntu.
 Finally, you can add a tag :latest

• If you do not specify a tag, latest
will be used by default?

 Steps to generate a Dockerfile that
creates an Ubuntu container:

DEVASCv1 22

What is Dockerfile?
 Enter the command docker images to see your image in the list of images on

the DEVASC VM.

• Change to the home directory and enter ls to see that it is empty and ready for
use.

• Enter exit to leave the Docker container and return to your DEVASC VM main
operating system.

DEVASCv1 23

Anatomy of a Dockerfile
 Consider the following Dockerfile that containerizes a Python app and the

explanation of the commands are as follows:
• The FROM command installs Python in the Docker image.
• The WORKDIR command tells Docker to use /home/ubuntu as the working

directory.
• The COPY command tells Docker to copy the file from Dockerfile’s current

directory into /home/ubuntu.
• The RUN command allows to directly run

commands on the container.
• The CMD command will start the server

when the user run the actual container.
• The EXPOSE command tells Docker that

the user want to expose port 8080.

DEVASCv1 24

Anatomy of a Dockerfile
 Docker takes advantage of what is stored in cache

to speed up the process.
 The docker build command is used to build the

image. In the given output, the image was
previously built.
 The Docker goes through each step in the

Dockerfile, starting with the base image, Python.
If this image does not exist on the system, Docker
pulls it from the registry. The default registry is
Docker Hub.
 Between steps such as executing a command,

Docker actually creates a new container and
builds an intermediate image, a new layer, by
saving that container.

DEVASCv1 25

Start a Docker Container Locally
 After building the image using dockerfile, create a new container and do some

work by entering the docker run command.
 The -d parameter is short for –detach and indicates that the image should run in

the background.
 The -P parameter tells Docker to publish it on the port that was exposed.

• Notice the container’s listing processes:

DEVASCv1 26

Start a Docker Container Locally
 Notice that Docker has assigned the container a name as pythontest. Naming is

also done by with the --name option.

 Even though the container is listening on port 80, it is just an internal port. Docker
has specified an external port as 32774, which will forward to the internal port.
 This lets you run multiple containers which listen on the same port without having

conflicts.
 To pull up the sample app website, use the public IP address for the host server

and that port is used.

DEVASCv1 27

Start a Docker Container Locally
 Docker also allows to specify a particular port to forward, so that a more

predictable system can be created.

 When the container is running, logging into its activity can be executed using
the exec command.

DEVASCv1 28

Start a Docker Container Locally
 To stop and remove rm a running container, call it by its name:

 Notice the running processes again and the running container has been removed.

DEVASCv1 29

Save a Docker Image to a Registry
 To make the image available for users, store it in an image registry.
 By default, Docker uses the Docker Hub registry, but users can create their own

registry too. To start the process:
 Log in to the registry.

DEVASCv1 30

Save a Docker Image to a Registry
 Commit the running container with the docker commit command.

 Use the docker tag command to give the image the tag which was committed.

• The first part, the repository, is usually the username of the account storing the
image. Next is the image name, and then finally the optional tag.

DEVASCv1 31

Save a Docker Image to a Registry
 Now the image is ready to be pushed to the repository.

• Notice that the new image is stored locally.

DEVASCv1 32

Create a Development Environment
 The development environment is meant to be convenient to the developer. It only

needs to match the production environment where it is relevant.
 A development environment can consist of any number of tools from Integrated

Development Environments (IDEs) to databases to object storage such as Eclipse
to databases to object storage. The important part here is that it has to be
comfortable for the developer.

DEVASCv1 33

6.3 Continuous
Integration/Continuous
Deployment (CI/CD)

DEVASCv1 34

Introduction to CI/CD
 Continuous Integration/Continuous Deployment (CI/CD) is a philosophy for

software deployment that figures prominently in the field of DevOps.
 DevOps is about communication and making certain all members of the team are

working together to ensure smooth operation.

DEVASCv1 35

Introduction to CI/CD
 Continuous Integration enables the developers on the project to continually

merge the changes with the main branch of the existing application.
 The Continuous Integration process provides a number of additional benefits:

• Code compilation
• Unit test execution
• Static code analysis
• Integration testing
• Packaging and versioning
• Publishing the version package to Docker Hub or other package repositories

DEVASCv1 36

Introduction to CI/CD
 Continuous Delivery

• It is the process of developing in short sprints so that the code is always in a
deployable state. It involves the following steps:
- Step 1: Start with the version artifact created as part of the CI process.
- Step 2: Automatically deploy the candidate version on staging.
- Step 3: Run gating tests identified by the team or organization.
- Step 4: If all gating tests pass, tag

this build as suitable for production.

DEVASCv1 37

Introduction to CI/CD
 Continuous Deployment

• Continuous Deployment is the ultimate expression of CI/CD.
• It is a special type of Continuous Delivery in which, every version of software that is

marked as ready for production gets deployed.
 Preventing impact to users

• In order to avoid impacting users, or limit the impact, these deployment strategies can be
used:
- Rolling upgrade: The changes are periodically rolled out in such a way that they don't

impact current users, and nobody should have to reinstall the software.
- Canary pipeline: The new version is rolled out to a subset of users. If these users

experience problems, the changes can be easily rolled back. If these users don't
experience problems, the changes are rolled out to the rest of production.

- Blue-green deployment: An entirely new environment (Blue) is created with the new
code on it, but the old environment (Green) is held in reserve.

DEVASCv1 38

CI/CD Benefits
 The benefits of using CI/CD for development include:

• Integration with agile methodologies
• Shorter Mean Time To Resolution (MTTR)
• Automated deployment
• Less disruptive feature releases
• Improved quality
• Improved time to market

DEVASCv1 39

Example Build Job for Jenkins
 Deployment pipelines are normally created with a build tool such as Jenkins.

These pipelines can handle tasks such as gathering and compiling source code,
testing, and compiling artifacts such as tar files or other packages.
 Example build job for Jenkins

• The fundamental unit of Jenkins is the project, also known as the job. Jobs are
created to do all sorts of things, from retrieving code from a source code
management repo to building an application using a script or build tool, to
packaging it up and running it on a server.

DEVASCv1 40

Example Build Job for Jenkins
 To create a simple job that retrieves a version of the sample application from

GitHub and runs the build script, perform the steps listed below:
• Step 1: Create a New Item in the Jenkins interface by clicking the "create new

jobs" link on the welcome page.
• Step 2: Enter a name, choose Freestyle project (so that you have the most

flexibility) and click OK.
• Step 3: Scroll down to Source Code Management and select Git, then enter a

GitHub repository URL for the Repository URL.
• Step 4: Scroll down to Build and click Add Build Step. Choose Execute shell.
• Step 5: In the Command box, add the command: buildscript.sh
• Step 6: On the left-hand side, click Build Now to start the job.
• Step 7: Move your mouse over the build number to get a pulldown menu that

includes a link to the Console Output.

DEVASCv1 41

Example Build Job for Jenkins
 To create a second job that tests the build to ensure that it is working properly,

perform the following steps:
• Step 1: Click the Jenkins link and New Item to start a new job, then create

another Freestyle job called TestAppJob.
• Step 2: This time, leave the Source Code Management as None. But there is an

option to set a Build Trigger so that this job runs right after the previous job,
BuildAppJob.

• Step 3: Scroll down and once again add a Build Step of Execute shell script.
• Step 4: Add the following script as the command, using the IP address of an

example Jenkins server and check to see if a condition is returned as true.

DEVASCv1 42

6.4 Networks for
Application Development
and Security

DEVASCv1 43

Introduction
 Networking accounts for all but the simplest of use cases such as cloud and

container deployments.
 Some of the applications which needs to be considered for cloud deployment are

given below:
• Firewalls
• Load balancers
• DNS
• Reverse proxies

DEVASCv1 44

Firewall
 Firewalls are a computer’s most basic defense against unauthorized access by

individuals or applications. They can take any number of forms, from a dedicated
hardware device to a setting within an individual computer’s operating system.
 At its most basic level, a firewall accepts or rejects packets based on the IP

addresses and ports to which they're addressed.
 Firewalls can be set up with specific “rules”, which are layered on top of each

other.
 A firewall can allow some connections and reject others.

DEVASCv1 45

Firewall
• In some cases, you might set up your systems so that logins to sensitive

systems can only come from a single machine. This is called a jump box.
• A jump box can be used to provide additional access while still providing an

additional layer of security. It sets up the systems so that logins can only come
from a single machine and everyone must log into that server first, then log into
the target machine from there.

DEVASCv1 46

Load Balancer
 A load balancer takes requests and balances them by spreading them out among

multiple servers.
 A load balancer parcels out requests to different servers.
 Load balancers makes their decisions on which servers should get a particular

request in a few different ways.

DEVASCv1 47

Load Balancer
 Persistent sessions - If an

application requires a persistent
session, a user needs to be logged in
and the load balancer will send
requests to the server handling the
session.

 Round robin - With round robin load
balancing, the server sends each
request to the next server on the list.

DEVASCv1 48

Load Balancer
Least connections - The load balancer
sends request to the server that is the
least busy - the least number of active
connections.

 IP Hash - With this algorithm, The
load balancer makes a decision
based on a hash (an encoded value
based on the IP address of the
request).

DEVASCv1 49

Load Balancer
 Blue-green deployment - Applies

changes to a new production environment
(blue) rather than making the changes on
the existing production environment
(green). A load balancer sends traffic to
the blue environment when it is ready, and
if issues arise, the load balancer can send
traffic back to the green environment and
changes can be rolled back.

 Canary deployment - Diverts a small
fraction of your traffic to the blue
environment. A load balancer can then
increase the amount of traffic diverted to
the blue environment until issues are
detected and traffic goes back to the old
environment, or all servers and users are
on the new environment, and the old one
is retired or used for the next push.

DEVASCv1 50

DNS
 Domain Name System (DNS) provides a way for the servers on the internet to

translate human-readable names into machine-routable IP addresses. These IP
addresses are necessary to actually navigate the internet.
 DNS translates hostnames into (made-up) IP addresses.

DEVASCv1 51

Reverse Proxy
 A reverse proxy is similar to a regular proxy, however, while a regular proxy works

to make requests from multiple computers look like they all come from the same
client, a reverse proxy works to make sure responses look like they all come from
the same server.
 A reverse proxy can evaluate traffic and act accordingly. In this way, it is similar

to, and can be used as, a firewall or a load balancer.

DEVASCv1 52

6.5 Securing Applications

DEVASCv1 53

Securing the Data
 Best practices for storing encrypted data

• Data breaches occur when data is stored but not protected. When it comes to
protecting data at rest, there are a few things to consider.

 Encrypting data
• Data encryption ensures that when an unauthorized access is gained into the

system, the data is not visible in its actual form. There are two methods for
encrypting data:

One-way encryption Two-way encryption

One-way encryption is simpler, in that you can easily
create an encrypted value without necessarily using a
specific key, but you cannot unencrypt it.

You would use that for information you do not need to
retrieve, just need to compare, such as passwords.

In Two-way encryption, you encrypt the data using a
key, and then you can use that key (or a variation on
it) to decrypt the data to get it back in plaintext.

You would use this for information you would need to
access in its original form, such as medical records or
social security numbers.

DEVASCv1 54

Securing the Data
 Software vulnerabilities

• Most developers are not experts in security and can accidentally code security
vulnerabilities into the application. Ensure that someone in the organization is responsible
for keeping up with the latest vulnerabilities and patching them as appropriate.

 Storing too much data
• Unless the data is needed for an essential function, don't store it.
 Storing data in the cloud

• Remember that when storing data in the cloud, it is stored in someone else’s computer.
Make sure that your cloud data is encrypted or otherwise protected.

 Roaming devices
• Apps are increasingly on devices that even more portable than laptops, such as tablets

and especially mobile phones. They are simply easier to lose. Be sure you are not leaving
your data vulnerable by encrypting it whenever possible.

DEVASCv1 55

Securing the Data
 Best practices for transporting data
 Data is also vulnerable when it is being transmitted. The following can be used to

prevent data vulnerability problems:
• SSH - SSH provides authentication and encryption of messages between the

source and target machines, making it difficult or impossible to snoop on the
users' actions.

• TLS - TLS provides message authentication and stronger ciphers than SSL.
• VPN - A VPN keeps all application-related traffic inside the network, which acts

as a proxy and encrypts all traffic to and from the user.

DEVASCv1 56

What is SQL Injection?
 SQL injection is a code injection technique that is used to attack data-driven

applications, in which malicious SQL statements are inserted into an entry field for
execution.
 SQL injection exploits a security vulnerability in an application's software. This

attack allows attackers to spoof identity, tamper with existing data, allow the
complete disclosure of all data on the system, destroy the data or make it
otherwise unavailable, and become administrators of the database server.
 SQL in Web Pages

• SQL injection is one of the most common web hacking techniques. It is the
placement of malicious code in SQL statements, via web page input.

• It occurs when a user is asked for input, like username/userid, and instead the
user gives an SQL statement that is unknowingly executed on the database.

DEVASCv1 57

What is SQL Injection?
 This example creates a SELECT statement by adding a variable uid to a select

string. The variable is fetched from user input using request.args("uid").

• SQL Injection based on 1=1 is always true. Create an SQL statement to select
user profile by UID, with a given UserProfile UID.

• If there is not input validator to prevent a user from entering "wrong" input, the
user can enter some input as UID: 2019 OR 1=1

• The output SQL statement will be:

DEVASCv1 58

What is SQL Injection?
 The SQL statement above is valid, but will return all rows from the UserProfiles

table, because OR 1=1 is always TRUE.
 If the UserProfiles table contains names, emails, addresses, and passwords, the

SQL statement will be:

 A malware creator or hacker might get access to all user profiles in database, by
simply typing 2019 OR 1=1 into the input field.

DEVASCv1 59

What is SQL Injection?
 SQL Injection based on batched SQL statements
 Most databases support batched SQL statements. A batch of SQL statements is a

group of two or more SQL statements, separated by semicolons.
 The SQL statement below will return all rows from the UserProfiles table, then

delete the UserImages table.

DEVASCv1 60

How to Detect and Prevent SQL Injection
 SQL injection vulnerability exists because some developers do not care about

data validation and security. There are tools that can help detect flaws and
analyze code.
• Open source tools: To detect a SQL injection attack easily, developers have

created good detection engines such as SQLmap or SQLninja.
• Source code analysis tools: Source code analysis tools, also known to as

Static Application Security Testing (SAST) tools, are designed to analyze source
code and/or compiled versions of code to help find security flaws such as buffer
overflows, SQL Injection flaws, and others.

• Work with a database firewall: Database firewalls detect SQL injections based
on the number of invalid queries from a host, while there are OR and UNION
blocks inside of request, or others.

DEVASCv1 61

How to Detect and Prevent SQL Injection
 Use prepared statements

• Prepared statements with variable binding - also known as parameterized
queries - are used by developers for writing database queries. Parameterized
queries force the developer to first define all the SQL code, and then pass
parameter to the query.

• Prepared statements ensure that an attacker is not able to change the intent of a
query, even if the SQL commands are inserted by an attacker.

DEVASCv1 62

How to Detect and Prevent SQL Injection
 Use Stored Procedures

• Stored procedures are not always safe from SQL injection.
• The difference between prepared statements and stored procedures is that the SQL code

for a stored procedure is defined and stored in the database itself, and then called from
the application.

• Both of these techniques have the same effectiveness in preventing SQL injection.
 Whitelist Input Validation

• Various parts of SQL queries are not legal locations for the use of bind variables.
• In such situations, input validation or query redesign is the most appropriate defense.
• If user parameter values are used for targeting different table names and column names,

then the parameter values should be mapped to the legal/expected table or column names
to ensure unvalidated user input does not end up in the query.

DEVASCv1 63

How to Detect and Prevent SQL Injection
 Escaping all user-supplied input

• This technique should only be used as a last resort when none of the techniques
are feasible and involves escaping user input before putting it in a query.

• The Escaping works in such a way that each DBMS supports one or more
character escaping schemes specific to certain kinds of queries.

• There are libraries and tools used for Input Escaping.
• The ESAPI libraries make it easier for programmers to retrofit security into

applications and serve as a solid foundation.

DEVASCv1 64

How to Detect and Prevent SQL Injection
 Additional defenses

• To provide defense in depth, these additional defenses can be adopted:
- Least privilege: The privileges assigned to every database account should be

minimized in order to reduce the potential damage of a successful SQL
injection attack. Minimizing the privileges will reduce the unauthorized access
attempts, even when an attacker is not trying to use SQL injection as part of
their exploit.

- Multiple database users: Web applications designers should avoid using the
same owner/admin account in the web applications to connect to the
database. Different DB users could be used for different web applications.

- SQL views: SQL views is used to further increase the access detail by limiting
read access to specific fields of a table or joins of tables.

DEVASCv1 65

Secure the Application
 The Open Web Application Security Project (OWASP) is focused on providing

education, tools, and other resources to help developers avoid security problems
in web-based applications. Resources provided by OWASP include:

Tools

OWASP Zed Attack Proxy (ZAP) Looks for vulnerabilities during development

Dependency Check Looks for known vulnerabilities in your code

OWASP DefectDojo Streamlines the testing process

Code Projects

OWASP ModSecurity Core Rule Set (CRS) Generic attack detection rules that can be used with web application firewalls

OWASP CSRFGuard Helps prevent Cross-Site Request Forgery (CSRF) attacks

Documentation Projects

OWASP Application Security Verification
Standard Provides a basis for testing web application technical security controls

OWASP Top Ten Describes the 10 most common security issues in web applications

OWASP Cheat Sheet Series Explains how to mitigate command security issues in web applications

DEVASCv1 66

Cross-Site Scripting (XSS)
 Cross site scripting attacks happen when user-submitted content that has not been sanitized

is displayed to other users.
 The most obvious version of this exploit is where one user submits a comment that includes

a script that performs a malicious action and anyone who views the comments page has that
script executed on their machine.
 Nowadays, the bigger problem is that the users are dealing with more than the data that is

stored in the database, or “Stored XSS Attacks.” For example, consider this page, which
displays content from a request parameter:

 A hacker could trick someone into visiting the page with a link in an email that provides
malicious code in a parameter:

DEVASCv1 67

Cross-Site Scripting (XSS)
 This link, which includes a url encoded version of the script, would result in an

unsuspecting user seeing a page of:

 This is called a Reflected XSS Attack. To prevent a reflected XSS attack, the
main strategy is to sanitize content where possible, and if it cannot be sanitized,
do not display it.
 OWASP recommends never displaying untrusted content in the following

locations:
• Inside script tags
• Inside comments
• As part of attribute names
• As part of tag names
• In CSS (within style tags)

DEVASCv1 68

Cross-Site Scripting (XSS)
 The content can be displayed in some locations, if it is sanitized first. These

locations include:
• Content of an HTML tag
• Value of an attribute
• Variable within Javascript
 Sanitizing content can be a complicated process to get right, as there are a wide

variety of options an attacker has.

DEVASCv1 69

Cross-Site Request Forgery (CSRF)
 Another type of attack that shares some aspects of XSS attacks is Cross Site

Request Forgery (CSRF), sometimes pronounced “Sea Surf.”
 In both cases, the attacker intends for the user to execute the attacker’s code,

usually without even knowing it.
 The main difference is that CSRF attacks are typically aimed not at the target site,

but rather at a different site, one into which the user has already authenticated.
 An interesting aspect of CSRF is that the attacker never actually gets the results

of the attack. They can only judge the results after the fact, and they have to be
able to predict what the effects will be to take advantage of a successful attack.

DEVASCv1 70

Cross-Site Request Forgery (CSRF)
 One method to prevent CSRF attacks is to include a hidden token that must

accompany any requests from the user.

 That CSRFToken has to accompany every request from the user for it to be
considered legitimate as it is impossible for the attacker to predict that token.

DEVASCv1 71

The OWASP Top Ten
 OWASP list of attacks include:

• Injection: This includes all sorts of injection attacks that can be prevented by
using parameterized APIs, escaping user input, and by using LIMIT clauses.

• Broken Authentication: This relates to multiple problems with user credentials.
These attacks can be prevented by avoiding default passwords, using multi-
factor authentication, and by using techniques like lengthening waiting periods
after failed logins.

• Sensitive Data Exposure: This refers to scenarios when attackers steal
sensitive information. Such scenarios can be prevented by storing as little
personal information as possible, and by using encryption.

• XML External Entities (XXE): These are attacks made possible an XML feature
that permits incorporating external information using entities, and can be
prevented by disabling XML Entity and DTD processing, or by using JSON
format.

DEVASCv1 72

The OWASP Top Ten
• Broken Access Control: This refers to the need to ensure that an application

that enables users to circumvent existing authentication requirements should not
be built and can be avoided by protecting all resources and functions on the
server side.

• Security Misconfiguration: This refers to the need to ensure that the system
itself is properly configured. Prevention of these types of problems requires
careful, consistent hardening of systems and applications.

• Cross-Site Scripting (XSS): This refers to the ability for an attacker to use the
dynamic functions of a site to inject malicious content into the page. These
attacks can be prevented by carefully considering where to include the untrusted
content as well as sanitizing any untrusted content.

• Insecure Deserialization: This describes issues that can occur if attackers can
access, and potentially change, serialized versions of data and objects. To
prevent such issues, do not accept serialized objects from untrusted sources.

DEVASCv1 73

The OWASP Top Ten
• Using Components with Known Vulnerabilities: Most of the core functions

are probably been written and included in an existing software package, and it is
probably open source. Many of the packages that are available also include
publicly available exploits. To fix this, ensure that they are using only necessary
features and secure packages.

• Insufficient Logging and Monitoring: It is important to ensure that the logs are
in a common format so that they can be easily consumed by reporting tools, and
that they are auditable to detect tampering.

DEVASCv1 74

Evolution of Password Systems
 Simple Plaintext Passwords

• The first passwords were simple plaintext passwords that allowed multiple users using the
same core processor to have unique privacy settings.

• Plaintext is an insecure way of storing passwords. If the database was hacked, the user's
passwords would be exposed to hackers directly.

 Password Hashing
• Storing passwords is risky and complex at the same time.
• A simple approach to storing passwords is to create a table in the database that maps a

username with a password.
• The security strength and resilience of this model depends on password storage format

which is cleartext.
• Storing passwords in cleartext is the equivalent of writing them down in a piece of digital

paper. If an attacker breaks into the database and steal the passwords table, the attacker
could then access each user account.

DEVASCv1 75

Evolution of Password Systems
Hashing
• Hashing is a more secure way to store a password in which it is transformed into data that

cannot be converted back to the original password.
• As stated by OWASP, hash functions used in cryptography have the following key

properties:
• It is easy and practical to compute the hash, but difficult or impossible to re-generate the

original input if only the hash value is known.
• It's difficult to create an initial input that would match a specific desired output.

Salted password
• To guarantee the uniqueness of the passwords, increase their complexity, a salt, which is

simply random data, is added to the input of a hash function.

DEVASCv1 76

Using cryptographic hashing for more secure password storage
• A critical property that makes hash functions suitable for password storage is that they are

deterministic.
• A deterministic function is a function that, given the same input, always produces the same

output. This is vital for authentication because one needs to have the guarantee that a given
password will always produce the same hash. Otherwise, it would be impossible to
consistently verify user credentials with this technique.

Adding salt to password hashing
• A salt is added to the hashing process to force hash uniqueness thereby increasing

complexity without increasing user requirements, and mitigating password attacks such as
rainbow tables.

• The unique hash produced by adding the salt can protect against different attack vectors,
while slowing down dictionary and brute-force attacks.

Evolution of Password Systems

DEVASCv1 77

Evolution of Password Systems
 Mitigating password attacks with a salt

• To mitigate the damage that a rainbow table or a dictionary attack could do, salt
the passwords.

• According to OWASP Guidelines, a salt is a fixed-length cryptographically-strong
random value that is added to the input of hash functions to create unique
hashes for every input, regardless of whether the input is unique.

• Let’s say that you have password devnet_password1 and the salt
salt706173776f726473616c74a

• You can salt that password by either appending or prepending the salt to it.

DEVASCv1 78

Evolution of Password Systems
 Additional factors for authentication
 Incorporating other authentication factors confuses the hackers who may have

cracked the password. Some of these factors are as follows:
• Single-factor authentication (SFA)

- Single-factor authentication is the simplest form of authentication methods,
using which, a person matches one credential to verify himself or herself
online. The most popular example of this would be a password (credential) to a
username.

- SFA has its risks as Online sites can have users' passwords leaked by a
hacker. A malicious user may guess the password as they know the user
personally, or as they were able to find out certain things about the user.

- A malicious user may also crack the password by using a bot to generate the
right combination of letters/numbers to match the users' simple, secret
identification method.

DEVASCv1 79

Evolution of Password Systems
• Two-factor authentication (2FA)

- Two-factor authentication uses the same password/username combination, but
with the addition of being asked to verify the identity of the persons by using
something owned by them only such as a mobile device.

• Multi-factor authentication (MFA)
- Multi-factor authentication (MFA) is a method of computer access control in

which a user is only granted access after successfully presenting several
separate pieces of evidence to an authentication mechanism.

- At least two of the mentioned categories are required for MFA: knowledge;
possession, and inherence.

- 2FA is just a type of MFA where you only need two pieces of evidence, two
“factors”.

DEVASCv1 80

Password Cracking
 The techniques for finding a password that allows entry is known as cracking the security

intended by the password. The following are some of the techniques:
• Password guessing

- Password guessing is an online technique that involves attempting to authenticate a
particular user to the system.

- It may be detected by monitoring the failed login system logs.
- Account lockouts are used to prevent an attacker from being able to simply guess the

correct password by attempting a large number of potential passwords.
• Dictionary attack

- A dictionary attack is based on trying all the strings in a pre-arranged listing, derived
from a list of words such as in a dictionary.

- These succeed because many people have a tendency to choose short passwords that
are ordinary words or common passwords.

DEVASCv1 81

Password Cracking
• Pre-computed dictionary attack or rainbow table attack

- It is possible to achieve a time/space tradeoff by pre-computing a list of hashes
of dictionary words and storing these in a database using the hash as the key.

- Pre-computed dictionary attacks are effective when a large number of
passwords are to be cracked.

- Pre-computed dictionary attacks can be thwarted by the use of salt, a
technique that forces the hash dictionary to be recomputed for each password
sought, making pre-computation infeasible, provided the number of possible
salt values is large enough.

• Social engineering
- Social engineering for password cracking involves a person convincing or

tricking another person for providing access to the attacker.

DEVASCv1 82

Password Cracking
 Six key principles of human influence

• Reciprocity – Our social norms mean that we tend to return a favor when asked.
• Commitment and consistency – When people commit, whether in person, in writing, or

on a web site, they are more likely to honor that commitment in order to preserve their self-
image.

• Social proof – When people see someone else doing something, such as looking up,
others will stop to do the same.

• Authority – This authority principle means that attackers who seem to be authoritative or
representing an authority figure are more likely to gain access.

• Liking – Likable people are able to persuade others more effectively. People are easily
persuaded by familiar people whom they like.

• Scarcity – When people believe that something is limited in amount, people will act
positively and quickly to pick up the desired item.

DEVASCv1 83

Password Cracking
 There are four social engineering vectors, or lines of attack, that can take

advantage of these influence principles.
• Phishing means the person is fraudulently gaining information, especially

through requests for financial information. Often the attempts look like a real web
site or email, but link to a collector site instead.

• Vishing stands for voice phishing, so it is associated with voice phone calls to
gather private personal information for financial gain.

• Smishing involves using SMS text messaging for both urgency and asking for a
specific course of action, such as clicking a fake link or sending account
information.

• Impersonation involves in-person scenarios such as wearing a service provider
uniform to gain inside access to a building or system.

DEVASCv1 84

Password Cracking
 Password strength - Password strength is the measure of a password’s

efficiency to resist password cracking attacks. The strength of a password is
determined by:
• Length: This is the number of characters the password contains.
• Complexity: This means it uses a combination of letters, numbers, and

symbols.
• Unpredictability: Something that can be guessed easily by an attacker.
 Here, the password #W)rdPass1 has strength and it would take about 21 years to

crack it.

DEVASCv1 85

Password Cracking
 Password strength checkers and validation tools

• The password strength validation tool is built in with password system to make
sure the user's password is compatible with latest identity management
guidelines.

• Password manager is the tool to ensure the strength of the password.
 Best practices

• There are a few best practices to secure user login attempts. It includes notifying
users of suspicious behavior, limiting the number of password and username
login attempts.

DEVASCv1 86

Password Cracking
 NIST Digital Identity Guidelines
 Here's a brief summary of the NIST 800-63B Digital Identity Guidelines:

• 8-character minimum when a human sets it and 6-character minimum when set
by system/service.

• Support at least 64 characters maximum length and all ASCII characters.
• Truncation of the password shall not be performed when processed.
• Check chosen password with known password dictionaries.
• Allow at least 10 password attempts before lockout.
• No complexity requirements, password expiration period, password hints.
• No SMS for two-factor authentication, knowledge-based authentication.

DEVASCv1 87

6.6 Summary: Application
Deployment and Security

DEVASCv1 88

What Did I Learn in this Module?
 Understanding Deployment Choices with Different Models

• Large organizations use a four-tier structure: development, testing, staging, and
production.

• The options to deploy the software are bare metal, virtual machines, containers, and
serverless computing.

• On-premises means any system that’s within the confines of your building.
• Clouds provide self-service access to computing resources, such as VMs, containers, and

even bare metal.
• The advantage of a private cloud is that the user has complete control over where it is

located.
• A public cloud is essentially the same as a private cloud, but it is managed by a public

cloud provider.
• Hybrid cloud is used to bridge a private cloud and a public cloud within a single application.
• An edge cloud moves computing closer to where it’s needed.

DEVASCv1 89

What Did I Learn in this Module?
 Creating and Deploying a Sample Application

• A container is way of encapsulating everything needed to run the application, so
that it can easily be deployed in a variety of environments.

• Docker is a way of creating and running that container.
• The development environment is meant to be convenient to the developer; it

only needs to match the production environment
• A development environment can consist of any number of tools, from IDEs to

databases to object storage.

DEVASCv1 90

What Did I Learn in this Module?
 Continuous Integration/Continuous Deployment (CI/CD)

• CI/CD is a philosophy for software deployment that figures prominently in the
field of DevOps.

• Continuous Integration all the developers on the project, continually merge your
changes with the main branch of the existing application.

• A deployment pipeline, can be created with a build tool such as Jenkins.
 Networks for Application Development and Security

• The applications you need to consider when it comes to cloud deployment
include: Firewalls, Load balancers, DNS, and Reverse proxies.

• At its most basic level, a firewall accepts or rejects packets based on the IP
addresses and ports to which they're addressed.

DEVASCv1 91

What Did I Learn in this Module?
 Securing Applications

• Securing data in two methods by encrypting data: one-way encryption, and two-
way encryption.

• SQL injection must exploit a security vulnerability in an application's software.
• A more secure way to store a password is to transform it into data that cannot be

converted back to the original password, known as hashing.
• By cryptography password are made to be secure.

DEVASCv1 93

	Module 6: Application Deployment and Security
	Module Objectives
	6.1 Understanding Deployment Choices with Different Models
	Introduction to Deployment Choices
	Deployment Environments
	Deployment Models
	Deployment Models
	Deployment Models
	Deployment Models
	Deployment Models
	Types of Infrastructure
	On-Premises
	Private Cloud
	Public Cloud
	Hybrid Cloud
	Edge Cloud
	6.2 Creating and Deploying a Sample Application
	What is Docker?
	What is Docker?
	What is Docker?
	What is Dockerfile?
	What is Dockerfile?
	Anatomy of a Dockerfile
	Anatomy of a Dockerfile
	Start a Docker Container Locally�
	Start a Docker Container Locally
	Start a Docker Container Locally
	Start a Docker Container Locally
	Save a Docker Image to a Registry
	Save a Docker Image to a Registry
	Save a Docker Image to a Registry
	Create a Development Environment
	6.3 Continuous Integration/Continuous Deployment (CI/CD)
	Introduction to CI/CD
	Introduction to CI/CD
	Introduction to CI/CD
	Introduction to CI/CD
	CI/CD Benefits
	Example Build Job for Jenkins
	Example Build Job for Jenkins
	Example Build Job for Jenkins
	6.4 Networks for Application Development and Security
	Introduction
	Firewall
	Firewall
	Load Balancer
	Load Balancer
	Load Balancer
	Load Balancer
	DNS
	Reverse Proxy
	6.5 Securing Applications
	Securing the Data
	Securing the Data
	Securing the Data
	What is SQL Injection?
	What is SQL Injection?
	What is SQL Injection?
	What is SQL Injection?
	How to Detect and Prevent SQL Injection
	How to Detect and Prevent SQL Injection
	How to Detect and Prevent SQL Injection
	How to Detect and Prevent SQL Injection
	How to Detect and Prevent SQL Injection
	Secure the Application
	Cross-Site Scripting (XSS)
	Cross-Site Scripting (XSS)
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)
	Cross-Site Request Forgery (CSRF)
	The OWASP Top Ten
	The OWASP Top Ten
	The OWASP Top Ten
	Evolution of Password Systems
	Evolution of Password Systems
	Evolution of Password Systems
	Evolution of Password Systems
	Evolution of Password Systems
	Evolution of Password Systems
	Password Cracking
	Password Cracking
	Password Cracking
	Password Cracking
	Password Cracking
	Password Cracking
	Password Cracking
	6.6 Summary: Application Deployment and Security
	What Did I Learn in this Module?
	What Did I Learn in this Module?
	What Did I Learn in this Module?
	What Did I Learn in this Module?
	Slide Number 93

